HSP27 protects the blood-brain barrier against ischemia-induced loss of integrity.
نویسندگان
چکیده
Loss of integrity of the blood-brain barrier (BBB) in stroke victims initiates a devastating cascade of events including extravasation of blood-borne molecules, water, and inflammatory cells deep into brain parenchyma. Thus, it is important to identify mechanisms by which BBB integrity can be maintained in the face of ischemic injury in experimental stroke. We previously demonstrated that the phylogenetically conserved small heat shock protein 27 (HSP27) protects against transient middle cerebral artery occlusion (tMCAO). Here we show that HSP27 transgenic overexpression also maintains the integrity of the BBB in mice subjected to tMCAO. Extravasation of endogenous IgG antibodies and exogenous FITC-albumin into the brain following tMCAO was reduced in transgenic mice, as was total brain water content. HSP27 overexpression abolished the appearance of TUNEL-positive profiles in microvessel walls. Transgenics also exhibited less loss of microvessel proteins following tMCAO. Notably, primary endothelial cell cultures were rescued from oxygen-glucose deprivation (OGD) by lentiviral HSP27 overexpression according to four viability assays, supporting a direct effect on this cell type. Finally, HSP27 overexpression reduced the appearance of neutrophils in the brain and inhibited the secretion of five cytokines. These findings reveal a novel role for HSP27 in attenuating ischemia/reperfusion injury - the maintenance of BBB integrity. Endogenous upregulation of HSP27 after ischemia in wild-type animals may exert similar protective functions and warrants further investigation. Exogenous enhancement of HSP27 by rational drug design may lead to future therapies against a host of injuries, including but not limited to a harmful breach in brain vasculature.
منابع مشابه
Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملIntensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion
Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...
متن کاملEndothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury.
The damage borne by the endothelial cells (ECs) forming the blood-brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs-namely, uncontrolled actin polymerization and subsequent disassembly of ju...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CNS & neurological disorders drug targets
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2013